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Ultrasonic and Acoustic Emission Detection

of Fatigue Damage

S. R. Buxbaum, C. L. Friant, S. E. Fick, and R. E. Green, Jr.

Materials Science & Engineering Department
The Johns Hopkins University
Baltimore, Maryland 21218

ABSTRACT

This report is a summary of research activities per-
formed under Air Force Office of Scientific Research Contract
No. F44620-76-C-0081 for the period March 1, 1976 through
May 31, 1980. The primary purpose of the research was to
optimize existing ultrasonic and acoustic emission techniques
and to investigate new ones for early detection of fatigue
damage in aluminum alloys used in aircraft construction.
Ultrasonic attéenuation measurements made simultaneously with
fatigue tests on aluminum alloy bar, and sheet specimens gave
warning of crack formation and imminent fracture much earlier
than conventional ultrasonic methods. An ultrasonic pulse-echo
system was used during fatigue cycling to record conventional
A-scan waveforms as well as to monitor ultrasonic attenuation.
In addition, acoustic emission signals were recorded simul-
taneously with the ultrasonic measurements on each test specimen
using two different acoustic emission systems. The correlation
of evidence of cumulative fatigue damage and acoustic emission
data was approached by the use of long term true-rms averaging

of the system output and frequency domain analysis of acoustic
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emission signals recorded at selected intervals throughout the

. test. The integrity of the data was verified by independent ]

electronic testing of the instrumentation. Visual and in situ
eddy current inspection, and optical and scanning electron

microscopy were used to correlate acoustic emission and ultra-

sonic attenuation data to the physically deformed microstructure.
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INTRODUCTION

Under the sponsorship of the Air Force Office of Scien~
tific Research, Contract No. F44620-76-C-0081, a study has
been made of various methods of nondestructively detecting
the onset of fatigue damage in aluminum alloys by use of ultra-
sonic, acoustic emission, and electromagnetic techniques.
This report is a summary of the progress made in these areas
since the research was initiated in 1976. A systematic com-
parison of techniques involving the detection of reflected
ultrasonic surface and body waves, and techniques involving
the measurement of ultrasonic attenuation and acoustic emis-

sion showed that, for the early detection of fatigue damage,

the reflection techniques are surpassed by those involving
ultrasonic attenuation and acoustic emission[1l].

Initially, ultrasonic attenuation measurements were made
simultaneously with fatigue tests on aluminum rectangular bar
specimens. These measurements gave warning of crack initiat-
ion and imminent fracture much earlier that conventional body
wave reflection techniques. This behavior was exhibited by
defect-free specimens as well as specimens initially contain-
ing induced latent defects. Our previous reports[2—7] have
documented the success of ultrasonic attenuation methods of
detecting fatigue damage.

Acoustic emission was chosen for investigation because of
its complementarity to the other techniques under study and
because of its applicability to fatigue testing of aluminum

[6~32]. 1Inititally the acoustic emission experiments of this
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research were combined with tensile tests. Since uniaxial

tensile loading causes an easily-described deformation and
introduces less mechanical noise into the specimen than does
fatigue(cyclic) loading, it was assumed that acoustic emis-
sion signals resulting from tensile deformation might be more
readily characterized. Tensile tests were performed on var-
ious aluminum alloys in order to compare acoustic emission
monitoring with ultrasonic attenuation monitoring as indica-
tors of microstructural alterations due to tensile deformat-
ion. Both ultrasonic attenuation and acoustic emission
measurements were made simultaneously during tensile elongation
of "dogbone" shaped test specimens of 1100-H, 6061-T6, 2024-T3,
and 7075-T651 aluminum. The results of these experiments
showed that for all four alloys acoustic emissions above the
background level occur almost exclusively before yield and
reach maximum activity at approximately 3% strain. Ultrasonic
attenuation changes occurred after yield, with periods of most
rapid change appearing just after yield and at the beginning

of load drop.

After the responses of acoustic emission and ultrasonic
attenuation in aluminum subjected to simple uniaxial tension
had been studied, and some correlations found, the research was
focused on the more complex case of fatigue loading. Acoustic
emission and ultrasonic attenuation measurements were performed
simultaneously during fatigue testing of specimens of aluminum

alloys possessing compositions and geometries typical of actual
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aircraft components. The purpose of these measurements was

to determine the range of applicability of the two methods

B oSt i A

to the testing of actual aircraft parts. Acoustic emission

measurements were successfully made only after steps were

j taken to eliminate the excessive noise causeé by the fatigue

| machine. i
; In the meantime, fatigue tests were run on 7075-T6

aluminum specimens in the forms of plain sheets and sheets

embodying fasteners in patterns similar to those of rivets

in aircraft. Ultrasonic attenuation measurements were con-

tinuously monitored during the fatigue cycling of these

specimens. The specimen thickness(1/16") necessitated the

F , use of a modified Lucite wedge to appropriately "launch"

the ultrasonic waves inside the sheet specimen. Results of

this study on 7075-T6 aluminum sheet specimens indicated that

8 continuous monitoring of the change in ultrasonic attenuation

provides warning of fatigue damage with approximately 10% of

the fatigue life remaining.

The next set of fatigue tests involved bar-shaped spec-

imens of 7075-T651 and 7075-W(solution treated) aluminum.

; The true root-mean-square(rms) voltage output of an acoustic

¥ 2 emission system loaned by the Admiralty Materials Laboratory

| (now Admiralty Marine Technology Establishment) was continuously
recorded, as was the ultrasonic attenuation signal. Both
signals provided early warning of fatigue damage at about 80%

i of the fatigue life for the 7075-T651 specimens and even earlier
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for the solution-treated specimens. Additionally, differences
observed in the acoustic emission signals indicated that the
microscopic deformation mechanisms generating acoustic emis-
sion during tensile deformation of 7075 aluminum are not the
same as those causing fatigue deformation.

In the most recent experiments, the rectangular bar shaped
speciments were modified to a "T" shape. This was done to in-
corporate in situ eddy current scanning for verification of
the presence of surface breaking fatigue cracks while still
permitting simultaneous ultrasonic attenuation monitoring and
acoustic emission monitoring by two separate commercial units
during fatigue testing. Various alloys, heat treatments, and
surface preparations were tested to study their effect on
acoustic emission and ultrasonic attenuation response. Dif-
ferent bending stress amplitudes were used to study the effect
on ultrasonic attenuation and acoustic emission behavior.

Several changes were made in the experimental set-up to
improve both system flexibility and ultrasonic attenuation
and acoustic emission sensitivity to fatigue damage. Set-point

and rate-of-rise cutoff circuits were installed to stop the

|
i

fatigue test when predetermined ultrasonic attenuation criteria
were met. One ultrasonic attenuation system was electronically J
multiplexed to accomodate two fatigue tests(ultrasonic atten-
uation changes were sufficiently slow to allow time-sharing).

It was found that a change in specimen temperature could have
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a significant effect on the attenuation so the temperature
of each specimen was monitored continuously during the test.
Unlike ultrasonic attenuation measurements, acoustic
emission measurements are adversely affected by extraneous
machine noise. For this reason, the test specimen was

acoustically isolated. Independent electronic testing

of acoustic emission transducers and amplifiers was necessary [
to determine how acoustic emission bursts were "colored" by
the detection system. Using knowledge of acoustic emission
system frequency response, time and frequency domain analysis
assisted in discrimination between acoustic emission signals
generated by various structural defects and the signals caused
: by extraneous noise sources during fatigue cycling. This type
g of analysis was also used to characterize burst emissions from
specimens containing a fatigue crack under both static and ]
? dynamic loading. With a fatigue crack present, the capabil-
ity of monitoring acoustic emissions from selected portions
of the load cycle proved beneficial in separating emissions
due to crack propagation from those due to crack wall rubbing.
Finally, the acoustic emission and ultrasonic attenuation data
‘ were compared with the physically deformed microstructure near
3 K cracks in partially failed specimens, and fracture surfaces
!

in failed specimens using optical and scanning electron micro-

?f : scopy . L
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ULTRASONIC ATTENUATION

Background

? It has been well established that the continuous monitor-
ing of ultrasonic attenuation can serve to assess evolving fa-
tigue damage in aluminum and its alloys [1-7, 14, 26-48].

This is because fatigue and ultrasonic attenuation in a mat-

erial are affected by a similar set of interndl and external

variables [46]. In general, greater fatigue damage in a %
material is accompanied by higher attenuation of ultrasonic

waves., In order to obtain early detection of fatigue damage,
the monitoring of ultrasonic attenuation has advantages over
other potentially-useful ultrasonic techniques. For example,
schemes involving the observation of a new ultrasonic reflect-
ion corresponding to a nascent crack require that the crack

have both sufficient size and proper orientation to reflect

enough ultrasonic energy to be detected. Since measurements
i of attenuation can effectively spatially average over the .
) entire specimen, small and diffuse microstructural changes,

such as those due to plastic deformation, can readily be de-

tected. The inevitable precedence of gradual diffuse damage
! to the formation of such discrete defects as cracks provides
the potential of attenuation measurements to give earlier
3 : warning than the aforementioned alternative methods.

The measurement of ultrasonic attenuation in specimens
simultaneously subjected to cyclic loading is not hindered by

1 the large amount of acoustical noise caused by the mechanical
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loading apparatus. The effects of unwanted noise can be
completely eliminated by appropriate electronic filtering.
Such filtering is more readily implemented and more effec-
tive than that required, say, for acoustic emission work.
The signal processing is made easier by the fact that
ultrasonic attenuation is measured using, at predetermined
instants of time, pulses of radio frequency(rf) energy
whose frequency spectra are known and far different from
the spectra of typical noise sources.

The greatest limitations to the use of ultrasonic
attenuation for materials characterization result from the
complex nature of ultrasonic wave propagation in solid media.
The conversion of ultrasonic energy between the various
possible modes of propagation must be avoided by the choice
of an appropriate specimen geometry if unequivocal measure-
ments are to be made; arbitrarily shaped specimens cannot
be tested. Further, considerable a priori information is
necessary since different mechanisms can similarly affect
ultrasonic measurements. Results presented later in this
report delineate the potential of ultrasonic attenuation
used within these limitations.

Instrumentation

The ultrasonic attenuation system used in the present
work is composed of a Matec Model 6600 pulser-receiver, with
a Model 950B rf plug-in and a Model 2470A attenuation re-

corder. The attenuation recorder includes a time gate
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permitting selection of any two echoes from the received
wave train, automatic gain control to stabilize the ampli-
tude of the echoes, and circuitry to obtain the logarithm
of the ratio of the amplitudes of the two selected echoes.
The application of rf pulses to the specimen was synchro-
nized with the fatigue loading cycle by the use of an optical
pick-up from the rotating shaft of the fatigue machine.
This assured stability in the recorded data by avoiding
beat frequency effects associated with random pulsing. A
variable delay interposed between the optical trigger and
the pulser-receiver allowed attenuation to be measured at

any desired point in the load cycle.
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ACOUSTIC EMISSION

- Background

One of the consequences of the application of stress suf-

i

ficient to activate the various deformation mechanisms in a

material can be the generation of elastic waves. Critical to

the future development of acoustic emission as a tool for mat-
erials characterization is the hypothesis that the acoustic
emissions from distinct deformation mechanisms are uniquely

distinguishable. Difficulties both theoretical and practical

have precluded the unequivocal linking of causative mechanisms
and associated elastic waves, with very few exceptions [49].
However, it has long been known that useful information, such
as the stress history or the present condition of a specimen
can sometimes be inferred from the time and frequency of oc-
currence of acoustic emission "events”, rather than from any
distinguishing features of the emitted waves themselves. Al-

though it cannot be used to assess the state of damage, the

occurrence of an acoustic emission event indicates that ad-

ditional damage has ensued. Since propagation effects such

i as mode conversion can be ignored to the extent that knowledge

! of waveform details is unimportant, acoustic emission can in
some cases be used with specimen geometries too complicated

K : to allow the measurement of ultrasonic attenuation. 1In this

research, propagational effects had to be taken into account

i .

§ . in the choice of specimen geometry since the examination of
i

; acoustic emission waveform details was to be attempted.
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Instrumentation ;
The acoustic emission systems used in this research were

an Admiralty Materials Laboratory(AML) Type 3 Acoustic Emis-

sion Amplifier and a Trodyne Model 7500-4 Acoustic Emission

Source Location System. Although both systems were equipped

for event counting, independent proof of performance testing

of the instruments was limited to the analog circuitry since

the research did not involve event counting. Frequency res-

ponse was measured both for the amplifier sections alone and

for the complete systems including transducers. The ampli-

fier section tests were made using a Hewlett Packard 310A

Wave Analyzer to drive the amplifier input through a suitable

termination. The frequency response of each complete system K
was measured by driving its transducer with an acoustical |
signal generated by a second transducer excited by the wave

analyzer. The frequency response of the system transducer

and the second transducer were independently measured elec-

trically. The output broadband noise voltage with no input

voltage applied, i.e. the noise floor, of each system was

measured with the Fluke 8920A true rms voltmeters used to meas~

ure the acoustic emission levels during fatigue tests. The

transducers were electrically coupled but acoustically iso-

lated for the noise floor tests.

AML Acoustic Emission System

The AML unit was the less complicated of the two acoustic

emission systems used. The transducers supplied with the unit
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consisted of a small cube of PZT-8(lead zirconate titanate), 1
with a primary resonance at 400 kHz, mounted in a brass
housing containing an rf matching transformer. A Mu metal

and copper screen cable was provided to carry the low level

acoustic emission input signal to an 18 dB preamplifier con-
tained in the main amplifier cabinet. The bandwidth is cons-
tant over the available gains of 60-100 dB since the gain is
increased by switching in additional 10 dB stages. Elec-
trical frequency response tests showed that the bandwidth

is reduced and modulated by transducer resonances. The rms
noise floor voltage, over a bandwidth of 20 MHz varied from
2.6 mV at 60 dB gain to 210 mV at 100 dB gain, which is con-
sistant with the design of the unit. Since the maximum rms
voltage swing at the analog output pack is 1 volt, the avail-
able dynamic range varies from 30 dB at 60 dB to 14 dB at

100 dB gain. The available dynamic range is completely ad-
equate for event counting; since these evaluation experiments
involved precision analog measurements care had to be taken

to maintain sufficient gain while avoiding overload.
Trodyne Acoustic Emission System

The Trodyne Model 7500-4 AE source location system uti- '
lized a small 10 dB preamplifier module to minimize the ef-
fects of the coaxial cable connecting the transducer to the
preamplifier input. The system has provisions for time dis-
crimination and event counting procedures for source local-

ization, although these features were not needed in the present

-

e am . e - §




12

work. The electrical frequency response of the main ampli-
fier at various gains, measured with none of the available
bandpass filters in use is shown in Fig. 1. Figure 2 shows

both the frequency response of the system, again with no fil-

tering, connected to a Panametrics Type AE-~01-2 transducer

(solid line) and the response of the Panametrics transducer ]

and test circuit (broken line). The gradual increase in

transducer response with increasing frequency is largely an

artifact of the test circuit used. The sharp excursions in-

dicate characteristic transducer resonances. Thus, Fig. 2

shows that the receiving transducer causes considerable co-

; loration of the frequency response. The available bandpass
filters have excellent slope and rejection characteristics.

5 ) The rms noise floor measured 40 mV regardless of system gain
i indicating that the system performance was not limited by

the preamplifier, but by later stages of amplification.
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SPECIALIZED INSTRUMENTATION

The ultrasonic attenuation and acoustic emission systems
were combined in several different ways during the course of
this study. Most of the data was obtained with these systems :
time-shared between two fatigue machines operating simulta-
neously. The long duration of many of the fatigue tests pro-
vided ample motivation for the development of customized elec-
tronics to maximize the information gathered by the available
ultrasonic equipment. In addition to multiplexing the ultra-
sonic equipment, the specially designed electronics served to
stop either fatigue test when its data met pre-established
criteria. This allowed such-occurrences as crack initiation
to be conveniently investigated by staff members. Where nec-
essary other specialized circuitry was constructed to syn-
chronize various tests with the operation of the fatigue ma-
chines.

A block diagram of the fatigue damage detection experi- 1

ment showing electrical connections between components is
shown in Fig. 3. A photograph showing the arrangement of the
experimental apparatus is presented in Fig. 4. A multichannel
strip chart recorder (Leeds and Northrup Speedomax 250 Series),
used to record all analog data, provides a synchronizing sig-
nal to the controller and the cut-off circuitry. The control-
ler generates the proper sequence of operations for the atten-

uation system; the cut-off circuitry removes the ac power to
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either fatigue machine when the attenuation for its specimen
exhibits appropriate changes (of either rate-of-rise or ab-
solute value). The attenuation system is turned on or off
by the application or removal of synchronizing signals from
the appropriate optical pick-up:; the use of independent pulse
delayers for each fatigue machine allows independent choice
of the point in the load cycle at which the attenuation meas-
urement is made. A reed relay switches the pulser-receiver
between transducers on either specimen. The sequence of
operations is arranged so that ultrasonic energy for atten-
uation measurements is never applied to a specimen while acous-
tic emission data are being recqrded; this precludes any pos-
sible interference. For reasons described later, specimen
temperature is recorded before each attenuation measurement.
For most experiments both acoustic emission systems were
used on separate specimens except when comparative tests of

the systems themselves were made. The block diagram (Fig. 3)

shows an arrangement designed to examine a specific feature
of the acoustic emission encountered in the fatigue tests of
this study. The objective was to selectively examine acoustic
emission occurring during various portions of the load cycle;
; the reasoning and results are presented later in this report.
! An electrical SPDT switch, called a signal divider in the fig-
; ure, synchronized by a signal from the optical trigger, pro-

vided two signal outputs to separate bandpass filters, whose

% output was measured using true rms voltmeters. A Nicolet
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Explorer III transient digitizer was used to obtain samples

of acoustic emission waveforms from each part of the load ,
|

cycle.
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TENSILE TESTS

T T wepat

4 - Acoustic emission and ultrasonic attenuation measurements
were made simultaneously during tensile elongation tests of
specimens of four different aluminum alloys. Tensile tests
were performed initially because they are simpler and more

easily controlled than fatigue tests. On all specimens test-

ed the acoustic emission activity (large frequent bursts)
3 was most extensive prior to yield. With the equipment used,

no perceptible change in ultrasonic attenuation was observed

prior to yield.

One inch diameter rod stock of various aluminum alloys
(1100H, 6061-T6, 2024-T3, 7075-T651) was machined to have a
reduced gauge section in a "dogbone" configuration. Gauge
sections of 5.08 and 10.16 cm in length and diameters of
1.27 and 1.02 cm were used, The end faces were machined flat
and parallel. In general, the specimens were given no further

preparation since the examination of commercial products was ;

the primary interest.

All of the specimens were subjected to uniaxial tensile
loading using an Instron testing machine. In these studies,
crosshead rates of 0.05 and 0.02 cm/min were used. The fix-

tures connecting the grips to the testing machine were spe-

3 . cially designed to maintain the straightness of the specimen
during deformation, since flexure would cause spurious ultra-

! ’ sonic measurements. The grips, which were specifically de-

; signed for this study, provided uniform uniaxial application
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of the load, reasonable acoustical isolation from the load-
ing machine, and easy access to either end of the specimen
for transducer placement. No influence of the mechanical
or electrical operation of the Instron testing machine on
either the ultrasonic attenuation or acoustic emission mon-
itoring was encountered.

Continuous ultrasonic attenuation measurements were made
using the Matec equipment described earlier. By subtracting
the initial attenuation value andfdividing by the instantaneous
specimen length, the change in attenuation per unit length
(dB/cm) was obtained. 1In conjunction with this monitoring
system a 0.5 in.(1.27 cm) diameter Aerotech 10 MHz Gamma
transducer was operated in the pulse-echo mode at a repetition
rate of 200 per second. The transducer was directly coupled
to the upper specimen face with nonaqueous stopcock grease.

A 3 kg weight was used to apply a constant load to the trans-
ducer, while a specially designed spacing ring was used to
assure central positioning, avoiding excessive reflections of
the pulse from the lateral surfaces. Care was taken to avoid
interaction between the attenuation and acoustic emission
systenms.

Acoustic emission was detected by a one inch diameter 100
kHz Panametrics Model 5070 resonant sensor coupled directly
to the lower end face of the specimen with nonaqueous stopcock

grease and held in place by a spring. The signal from the

transducer was amplified and bandpass filtered from 10 kHz

i
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to 300 kHz by a Tektronix 1A7A High Gain Amplifier. Further
filtering by a Kronhite Model 3202 Filter from 80 kHz to 120
kHz conditioned the signal which was counted by a Monsanto
Model 112A counter.

Load, ultrasonic attenuation,and acoustic emission were
monitored as a function of extension for the four aluminum
alloys. For all alloys tested, it was found that the acoustic
emissions detected before the yield point was reached had much
greater amplitude and frequency of occurrence than those de-

tected after yield; in most cases, nearly no acoustic emis-

sion was detected after yield. The ultrasonic attenuation,

however, was found to exhibit a different behavior, in that

the change in attenuation per unit length prior to yield was
essentially imperceptible.

Two additional series of tensile tests were performed
on specimens of 7075 aluminum monitoring acoustic emission
only. Part of the motivation for selection of this partic-
ular alloy was the availability of previously published
opinions of other investigators on the origin of the ob-
served acoustic emission signals. In the first series, an
examination was made of the burst type of emission observed
prior to macroscopic yield of 7075 aluminum in the T6é heat-
treated condition. 1In these experiments, no acoustic emis-
sion activity was observed upon immediate reloading of the
test specimen to load levels not in excess of those applied

on the first loading. However, when the test specimen was

S e ST, YT IO 4 e AP -y
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allowed to sit at room temperature for three days between
first loading and reloading, the burst type emissions were
once again observed prior to macroscopic yield. This result
appears to contradict the theory which attributes all burst
type emissions to particle cracking, because the fractured
intermetallic particles would not heal themselves. In the
second series of tests, low level acoustic emission activity
was monitored by recording the true rms voltage output from
the detection system during tensile deformation. As-received
material was found to behave in such a manner that this low
level activity peaked in the range of 3 - 5% strain. A
typical set of test results is shown in Fig. 5. Burst type
emission was evident prior to and during yield while low
level emission activity gradually increased beyond yield and
reached a maximum at 4.5% strain. Overall examination of the
acoustic emission detected during the deformation of 7075~
T651 aluminum suggests the possible utilization of this type
monitoring for detecting the onset of plastic deformation.
This may be successfully accomplished by noting the sharp
decrease in burst type emission and the gradual increase of
low level activity.

In order to determine the role played by the precipitate
particles in the acoustic emission activity, similar tests
were performed on solution treated specimens. Marked dif-

ferences were observed as shown by the results of a typical

PP TPl Sy svn oo




e e

("utw/wo GQ°0 :93ex UOT3IRHUOTY *pPOATIDdI-se ‘TV T1G9L-SL0L)

YIVA NOISSIWIE OJILSO0DY LSIL ATISNAL TYOIdAL

(uiw) awiy

‘S dYNOId

0
O

(sijon) abojjopn a.pnbg uDay 100y 3nJy

Gl ol
0 T T
- uIDNS %Gb
~ 8 0001}
Q
=
o
Q3A13034-SVY
0002

ESERE A LY

B R Al L

T by

31




25

test depicted in Fig. 6. Whereas a small almost imper-
ceptible peak in the low-level emission occurred near yield
in the as-received material (Fig. 5), an extremely large
sharp peak is observed at yield in the solution-treated
samples (Fig. 6). 1In these latter specimens, little burst
type emission was observed. A peak in the low-level emis-
sion is again observed at approximately 5 or 6% strain, but
the maximum is not well defined. Additional elongation of
the solution-treated samples led to a region of discontinous
yielding with corresponding fluctuations in the acoustic emis-
sion behavior.

Analysis of the tensile tests indicates that the source
of burst type acoustic emissions occurring both before and
after the yield are the same in 7075-7T651, 7075-T6 and 7075
solution-treated aluminum alloys, and result from the break-
away of pinned and piled up dislocations. Intermetallic par-
ticle fracture was discounted as a primary source of emissions
because the solution-treated specimens, which do not contain
intermetallic particles, exhibited a great deal of acoustic
emission activity. The large number of low level acoustic
emissions occurring at yield in the 7075 solution-treated
specimens are thought to be the result of elastic strain
energy released from newly generated dislocations which acti-
vate other sources causing avalanching. Subsequent interaction

of the glissile dislocations with strong pinning points (e.qg.
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sessile dislocations) and weak pinning points (e.g. vacan-

cies, impurity atoms, precipitates, and inclusions) causes

the rate of dislocation generation and the associated acoustic
emission to decrease. Since no such low level acoustic emis-
sions were observed at yield in the 7075-T651 or 7075-T6
specimens, it is apparent that the precipitate particles

prevented glissile dislocation motion.
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FATIGUE TESTS ON SHEET SPECIMENS

Sheet specimens made from 7075-T6 aluminum of thickness
typical of the outer skin of an aircraft were fatigue tested,
while ultrasonic measurements were made throughout the tests.
This study indicated that attenuation monitoring gave early
warning of fatigue damage at approximately 90% of the elapsed
fatigue life of these specimens. To minimize differences in
alloy composition, cold work and heat treatment, specimens
were cut from the same sheet of 7075-T6 aluminum stock. Care
was taken to assure the similarity of the surface condition
and to note the rolling direction of each specimen. The sheet
specimens were fatigue tested in a Krouse Fatigue Machine
which subjected the specimens to cyclic loading in reverse
bending as a cantilever beam at a rate of 1725 cycles per min-
ute. Stepless adjustment of an eccentric cam permitted var-
iation of the beam deflection over a wide range of values.

Figure 7 is a schematic diagram of the experimental ap-
paratus. The Matec equipment described earlier was used to
continuously monitor ultrasonic attenuation, while the pulse-
echo waveform itself was monitored periodically by visual and
photographic means.

Three specimen configurations, typifying those which might
be encountered in an aircraft, were tested. Shown in Fig.

8(b) and 8(c) are two specimen configurations including fasten-

er hole patterns; one with screws located near the end of the
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specimen and the other with screws located near the middle

of the specimen. Screw fasteners were used rather than riv-
ets to facilitate examination of these regions after fatigue
failure. The remaining specimens were tested plain (Fig,
8(a)) with no fasteners or fixtures. The dimensions, the
area of clamping, and the transducer position are also shown
in Fig. 8.

A 0.5 in. x 1 in. 2.25 MHz longitudinal transducer was
used in conjunction with a modified mode conversion block
(made of Lucite) designed to launch shear waves at an angle
of 45° to the surface normal. The mode conversion block or
"wedge" was coupled to the specimen with an ethylene glycol-
based couplant. This method of introducing the ultrasound
into the specimen was required because the thin cross section
precluded mounting of the transducer on the end of the spec-
imen. Modification of the mode conversion block was neces-
sary to obtain adequate signal levels. The modification serv-
ed to limit the area of contact between the wedge and the spec-
imen to the projected area of the active element of the trans-
ducer onto the base of the wedge. In thick specimens, no dif-
ference was observed in the amplitude of the return echoes
using either the commercially available wedge or the modified
wedge. However, in the thin specimens, a large difference in

amplitude was observed between the return echoes detected us-

ing the two wedges. The difference in the observed amplitude
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was caused by energy losses in the excess material of the
commercial mode conversion wedge. With thin specimens,
energy was lost before the generated pulse propagated out
from under the wedge and again energy was lost before the
return pulse reached the transducer. 1In the case of thick
specimens no energy was lost because the pulse had propa-
gated out from under the wedge before it returned to the
upper surface. Schematic diagrams illustrating the wedge-
specimen configurations for the four possible cases are
shown in Fig. 9. Because of the high attenuation caused
by the multiplicity of surface-to-surface reflections in
thin specimens, attenuation could not be measured conven-
tionally by the use of two successive reflections from a
specimen surface. 1Instead, the amplitude of a particular
reflection was compared with a stable electronic reference
signal.

During the actual tests with the plain specimens, the
attenuation was continously recorded using a strip-chart
recorder, and the pulse-echo pattern displayed on an os-
cilloscope was monitored visually and photographed. The
echo from the end of the specimen was amplified to 6 V
and observed at 2 V/cm on the oscilloscope. The oscil-
loscope gain was then increased to 0.05 V/cm and the pattern

photographed. Once this was done, the fatigue test was

started. At 0.05 V/cm any new or additional pulse could
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be positively identified as such when it reached an ampli-
tude of 0.03 V by comparison with the initial photograph.
For the rivet-simulated specimens only the attenuation was

monitored due to the more complex pattern.

Figure 10 depicts two typical plots of ultrasonic

attenuation versus percent fatigue life. The data for a

plain specimen with its length parallel to the rolling di-

- rection are shown in Fig. 10{a). Although the attenuation
increased slowly during the early stages of fatigue, no sig-
nificant change in attenuation nor any significant addition-
f al pulses were observed during the first 85% of the fatigue
i' life of the specimen. An additional echo having an ampli-
tude of 0.03 V was first observed at 5.75 x 105 cycles or

-; | 86% of the fatigue life. At the same time the attenuation
began to increase significantly. The total fatigue life of
the specimen (160%) was 6.69 x 10° cycles. Similar data are

shown in Fig. 10(b) for a specimen having its length per-

pendicular to the rolling direction. The attenuation changed

very little in the first 83% of the fatigue life. It began

to increase at 83% of the fatigue life and an additional pulse !
was observed at approximately 84% or 2.95 x 103 cycles. The !
total fatigue life (100%) was 3.48 x 10° cycles. As would be
expected due to the differences in texture, the fatigue life

of the plain specimens whose length were perpendicular to the

* rolling direction were less than those with the length parallel

to the rolling direction.
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These experiments indicated that by continously mon- ;
itoring the change in the ultrasonic attenuation, an early
warning of approximately ten percent of the fatigue life is
possible before failure occurs in 7075-T6 aluminum sheet.

It was also found that there was more change in the atten-

ey

uation in the early portion of the fatigue life for the
rivet-simulated specimens than for the plain specimens. As
a result, more difficulty was encountered in relating the

magnitude of the change in attenuation to the remaining fa-

tigue life for these type specimens.
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FATIGUE TESTS ON RECTANGULAR BAR SPECIMENS

A large body of previous work (referenced earlier in
this paper) has shown that ultrasonic attenuation measure- i

ments provide a reliable indication of fatigue damage in

aluminum bar specimens with as much as 40% of the specimen

fatigue life remaining. The extent of early warning is
highly dependent on specimen composition and heat treatment.
For this study, continuous acoustic emission monitoring was ]
combined with ultrasonic attenuation monitoring on rectan-
gular bars of 7075-T651 and 7075 solution-treated aluminum.
The fatigue test results on these two heat treatments of 7075
aluminum in general appear very similar, with the ultrasonic
attenuation exhibiting little variation until a rapid in-
crease occurred between 90% and 95% of the elapsed fatigue

i life. Similar behavior was observed in the records of rms

!

acoustic emission voltage vs. percent fatigue life. After

3 some initial fluctuations, the rms voltage was smooth until

the period between 85% and 95% of the elapsed fatigue life
where the rms voltage began increasing rapidly.

The bar specimens were 1 in. wide, 12 ins. long and
, 1/2 in. thick and were fatigued at a maximum bending displace-~
:E . ment of 9.0 mm peak-to-peak. The fatigue machine and ultra-
; | sonic attenuation monitoring system were the same as those

used for the sheet specimens, except for the transducer. A

10 MHz, 1/2 in. diameter, end-mounted, longitudinal transducer
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was used on the bar specimens. The Admiralty Materials Lab-
oratory acoustic emission system was used in conjunction with
a true rms voltmeter with logarithmic output and a multi-
channel strip-chart recorder.

Figures 11 and 12 display the results of typical fatigue
tests on 7075-T651, as-received, and 7075 solution treated
specimens, respectivély. In Fig. 11 the change in ultrasonic
attenuation exhibits no appreciable alteration until 80%

(1.5 x 10° cycles = 100%) of the fatigue life at which point
it changes rapidly, going off scale at approximately 97% of
the fatique life. Examination of raw experimental data show-
ed that the attenuation continued to increase for the remain-
der of the fatigue life. The true rms voltage output of the
acoustic emission signal, which was amplified by 70 4B, was
seen to fluctuate at the start of the test, level off and be-
gin to steadily increase at 80% of the fatigue life, with a
more rapid increase occurring after 95% of the fatigue life.
Unlike the smooth, nearly monotonic behavior of the ultra-
sonic attenuation curve the rms curve is seen to have local
maxima and minima. The peaks, in actuality, consist of many
individual burst indications compressed together because of
the time scale of the recording. Very similar behavior is
seen in Fig. 12 which is typical of the solution-treated spec-

imens. The change in ultrasonic attenuation shows a small but

= - N TR g e an Gl - ;



39

abojjoA ai0nbg UDIW 100y NI

(Aw)

UOTSSTWO OT3ISNOOY
uoT3eNUI3IIR OTUOSEIITN

:9AIND payseq
$19AIND PTITIOS

NIWIDEdS d¥d TS9L-SL0L 40 LSHL dANOILYI WOdd VLYA

NOISSIWA JILSNOOVY dN¥ NOILVANALLY JDINOSWILIN dANILHWOD *TT TINOIA
aj1q anbijog 9%
0ol 06 08 oL 09 onhme[ﬂnl|\io_~n..n“w‘|.bo
_ O
-~ 4
) 2 [ W
\\\lln - AN [l
L W VAN AT 'VTAY I
WAV A _
-0l 5
c
3
— [] (7]
“ 3
! Jdoz 2
Af
Y 4
" s
! >
' c
f HJos 2
| ]
[] >
oo} -
t----) SWY m
Q3A13034 -SV o'b

Tm e e e e e .- -

N




40

(Aw) abojlop asonbg uDIW {00y 3NiL

UOTSSTWS OT3ISNOOY
UoOT3PNUD33E DOTUOSEIAZIN

NIWIOEdS dILVYIAL-NOILNTIOS

19AIND paysed
:3AI0ND PITOS

GL0L JO LSAL FNOILVA WOMJd VIVA JINIGWOD *ZT &dN9Id
8j11 anbyog %
00Ol 06 08 OL 09 O Ov O 02 O o

0 T T | T T L e S oy AU.J
o
>
- <o
\ \\\\\-‘ll'l llllllllll - l‘lll”‘\\.lllJ— o®
Yt I
M . wo_ c
oSk i 3
E
(] .n . =
" liom >
0] .a.. W
OO_D.m m
i =
4 . =

: ¢
; e
@
R lllll v m:m —

osi- G31v3¥L-NOILAT0S o




41

steady increase until 90% of the fatigue life (7.4 x 106

cycles = 100%), when it begins to increase rapidly, going
off scale at 94% of the fatigue life. Similarly, the rms

curve, after a peak at the beginning of the deformation,

{ levels off until approximately 78% of the fatique life,

; when the overall rms curve begins to increase slowly, with
several large peaks superimposed on the overall increasing
trend. A rapid, overall increase began at 87% of the fatigque !
life, and leveled off at an elevated value, at 95% of the
fatigue life. It is important to note that the ultrasonic

measurement was performed synchronously with the cyclic

S e b i A A1 )

deformation such that the specimen was undeflected at the z.
time of the actual measurement. Both ultrasonic attenuation

and acoustic emission measurements consistently provided

some degree of early warning of fatigue damage in the 7075

aluminum bar specimens tested.
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FATIGUE TESTS ON T~-BAR SPECIMENS

Background

The rectangular bar shape used previously was modified
to permit simultaneous ultrasonic attenuation and dual (i.e.
with two separate instruments) acoustic elmission measure-
ments to be made in combination with in situ eddy current and
visual inspection. The fatigue machine; acoustic emission,
ultrasonic attenuation, and eddy current instrumentation;
and the specimen mounted in the fatigue machine are illus-
trated schematically in Fig. 13. The new T-bar specimen geo-
metry and its mounting arrangement are shown in Fig. 14. A
sharp reduction in cross-sectional area was included in the
specimen design to provide a region of stress concentration
and thus localize the region of probably failure. This local-
ization simplified the visual and eddy current examination for
surface breaking cracks during fatigue cycling.

As will be detailed later, the modified specimen shape
also allowed the use of a novel scheme for attenuation measure-
ment that provided enhanced sensitivity to crack formation.
The shoulder of the reduced cross-section was located suf-
ficiently far from the steel grips of the fatigue machine to
eliminate any possible deleterious effects on eddy current
testing caused by close proximity. The constriction in area

also ensured that the radiated sound field of the transducer

overfilled the region where fatigue damage occurred.
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The initial ultrasonic attenuation and acoustic emis-
sion measurements conducted in the most recent research
were made on specimens which possessed sharp, square cor-
ners at the reduced cross-section shoulder. It was found
that the notch effect at the sharp corners caused a severe
stress concentration which often led to premature crack
formation and fracture. This problem was solved by in-
corporating a 1/16" radius into all corners formed at the
reduction in cross-~section of the specimens. Various alloy
compositions, heat treatments, and surface finishes were
used in order to study their effect on fatigue damage and

early warning of fatigue damage.

Fatigue Test Results

To provide a data base and to verify expectations involv-
ing the effects of fatigue test amplitude, heat treatment,
and specimen surface preparation on fatigue life, a variety
of tests were conducted. Figure 15 shows a plot of bending
stress versus number of fatigue cycles for 45 fatigue tests
run on 7075 aluminum .specimens. The use of a logarithmic
scale to plot the number of fatigue cycles facilitated the
compact display of the wide range of test durations. The
different symbols in Fig. 15 represent different specimen
conditions: triangles indicate fine or rough surface polish-
ed 7075-T651 aluminum, circles correspond to as-received sur-

face condition of 7075-T651, and squares denote as-received
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surface condition annealed 7075 aluminum. The curves shown
in Fig. 15 were drawn to enclose all data points and do not
represent any theoretical prediction of fatigue life. How-
ever, the upper curve passing through the highest stress for
a given number of cycles indicates an endurance limit (the
value of stress for which the specimen will not break at any
number of cycles) of 22 ksi which may be considered in close
agreement with the American Society for Metals Handbook value
of 23 ksi for 7075-T6 aluminum using a different fatigue test-
ing apparatus and polished "dogbone" shaped specimens. The
arrows beside several of the data points indicated that these
specimens showed no sign of imminent failure after more than

twelve million cycles.

Ultrasonic Attenuation Measurements and Results

The ultrasonic attenuation measurements made on these

—

specimens were not conventional because the attenuation
values recorded were not obtained from the amplitude ratio

of two successive reflections from the same part of the test
specimen. 1Instead, the amplitude of the first reflection
from the specimen shoulder was compared with the amplitude of
the first reflection from the specimen end. This was done

for two reasons. First, these two reflections had larger

amplitudes than any of the other detectable reflections.

Secondly, this procedure offered enhanced system sensitivity

to crack formation. Since crack initiation occurs near or in
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the plane of the shoulder, and since there is reflection of

—

§ - ultrasound from the crack, the first reflection from the
shoulder is increased by crack formation. Conversely, a

crack at the shoulder will disperse ultrasound traveling

the full length of the specimen and thus reduce the ampli-
tude of the first reflection from the specimen end. Hence,
the relative change of the ratio of the amplitudes of the
reflections from the shoulder and specimen end will be

greater than that of two successive reflections from the
specimen end. A typical pulse-echo pattern, photographed

from the monitoring oscilloscope of a fatigue specimen before
testing and a schematic drawing showing corresponding wave
paths is shown in Pig. 16. As shown, peak A is due to the

! : reflection of ultrasonic energy from the reduced cross-section
shoulder of the specimen. The next large echo, peak B, is due
to reflection from the end of the specimen,

A pulse-echo pattern as photographed from the monitoring
oscilloscope after a test specimen had exhibited crack initi-
ation is shown in Fig. 17. Comparison of this pattern with
the pattern photographed prior to fatigue crack initiation,
Fig. 16, reveals several significant differences. The ampli-
tude of the first reflection from the specimen end, peak B,
is much smaller in Fig. 17 than in Fig. 16. This decrease in
amplitude of peak B is caused both by the enhanced reflection
from the diminished transmission through the crack, and by the
action of the automatic gain control circuitry in the atten- i

uation recorder. Any increase in the amplitude of the first

i
I
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;
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TYPICAL PULSE-ECHO PATTERN

——1 WAVE PATH OF PEAK A

WAVE PATH OF PEAK B

f FIGURE 16. PULSE-ECHO WAVEFORM AND PROPAGATION PATHS
IN T-BAR SPECIMEN BEFORE CRACK INITIATION
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PULSE-ECHO PATTERN AND WAVE PATH AFTER
CRACK INITIATION




reflection from the shoulder, peak A, is cancelled by the

automatic gain control, which by decreasing the overall
system gain effectively decreases the amplitudes of all other
echoes.

Crack detection can also be accomplished by inspection
of the pulse-echo waveform. Although the use of a reduc-
tionin cross-section to localize crack formation causes a
large reflection of ultrasound from the shoulder thus creat-
ed, the appearance of new echoes signalling crack initiation
is not precluded. For example, peak C in Fig. 17 has no
counterpart in Fig. 16. The time of arrival for echo C cor-
responds to a reflection from the specimen end, followed by a
reflection from the crack, a second reflection from end,
and finally transmission of the pulse past the crack to the
transducer. It follows from the specimen geometry that the de-
crease in cross-sectional area at the shoulder causes partial
reflection of a pulse traveling away from the transducer, but
has an insignificant effect on a pulse traveling from the spec-
imen end to the transducer. The second and third reflections
from the shoulder-crack plane, show increased amplitudes rela-
tive to their counterparts in Fig. 16. This illustrates the
increased reflectivity caused by the presence of the crack.
Also, the echo due to the second reflection from the specimen
end, has traversed the shoulder plane four times and is there-

fore greatly attenuated when a crack is present.

=
-




RUmT

! . Ambient temperature was discovered to influence the value
of the ultrasonic attenuation; a fluctuation of 6°F changed

the indicated attenuation by as much as 0.4 dB. For this

reason, specimen temperature was monitored concommitant with

the attenuation measurements. A small inexpensive germanium

signal diode, strapped to the specimen, served as the tempe-
rature sensor. A Wheatstone bridge circuit provided electric-~
al interface to the strip-chart recorder. A calibration curve
for a typical diode over the temperature range of interest is
given in Fig. 18, By monitoring the temperature continously
real attenuation changes could be separated from those due to
! changes in specimen temperature.
In over 90% of the tests on specimens fatigued until crack
formation occurred, the presence of a crack easily detectable
by eddy current scanning was indicated by at least a 0.5 dB

change in ultrasonic attenuation. In some cases the 0.5 dB

change in attenuation observed was a decrease rather than an

increase. All attenuation changes beyond 1.0 dB were increases
and portended imminent failure.

Early warning of fatigue attainable with ultrasonic atten-
uation was found to be strongly dependent on specimen surface
condition. Figures 19 and 20 show typical changes in ultra-
sonic attenuation versus percent fatigue life'curves for high-
ly polished and as-received surface condition 7075-T651 spec-
imens fatigued to fracture. Ultrasonic attenuation gave ear-

lier warning of fatigue damage for specimens in the as-received
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surface condition than for specimens with highly polished
surfaces. Comparison of the experimental results obtained
for two specimens showed that, for fatigue tests of similar
length, the number of fatigue cycles from crack initiation

to specimen fracture was 2.97 x 10° for the as-received
specimen and only 1.08 x 10° for the highly polished spec-~
imen. In both cases, when surface crack initiation occurred,
the ultrasonic attenuation changed significantly. Several
explanations for this behavior are possible. Consider the
well-established fact that polishing increases the fatigue
strength, i.e., the stress at which, for a given number of
cycles, a specimen will fail. Thus, for tests of comparable
length run during the present research, the more highly poli-
shed specimens were fatigued at higher stress amplitudes than
the as-received and less polished specimens. In spite of the
higher stress amplitudes, crack initiation occurred later in
the fatigue life of the polished specimens. This delay in
crack initiation can be attributed to the reduction in number
and severity of potential crack initiation sites as a result
of surface polishing. Since crack initiation is invariably
accompanied by substantial changes in ultrasonic attenuation,
this explanation is consistent with the experimental results.
The relative lack of early warning obtained with the highly
polished specimens is also consistent with two other factors.

First, a highly polished specimen will fracture faster, once a

o S i o —he




57

crack has been initiated, because of the higher stress am-
plitude being applied during the fatigue test. Second,
because of the higher stress amplitude and longer test dur-
ation prior to crack initiation, the highly polished spec-
imens will have sustained more extensive bulk damage than

the unpolished specimens. Once initiated, the crack propa-
gates easily and rapidly through the highly polished specimen
until fracture. This severely limits the amount of early
warning attainable with highly polished specimens by ultra-
sonic attenuation monitoring. In the case of the as-received
specimens, earlier warning was possible because at the time
of crack initiation the surrounding material was still
relatively unchanged except for a small plastically deformed
region around the crack tip and sides.

The experimental results also showed the effect of heat
treatment on the sensitivity of ultrasonic attenuation as a
predictor of fatigue failure. To study this effect, tests
on 7075 aluminum in the T651 and annealed(0) conditions were
performed. Data for 7075-T651 aluminum has been presented
earlier in this section. Annealed 7075 aluminum specimens
fatigued at high amplitudes of bending behaved in a manner
similar to the solution treated 7075 aluminum rectangular bar
specimens discussed previously. The ultrasonic attenuation,
as presented in Fig. 21 for an annealed specimen, showed a
small but steady increase until about 70% of the fatigue life

where it reached a plateau and a crack was detected using eddy

current scanning. The slow but steady increase in the attenuation

e cede il )
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is believed to be due to work hardening caused by an increase
in dislocation density, especially on the surface, with in-
creasing fatigue cycles. This behavior is not expected or
observed with the already high dislocation density 7075-T651
aluminum. It is also not observed in annealed specimens
fatigued at low amplitudes of bending. Perhaps work harden-
ing is less severe and more recoverable at lower amplitudes
of bending. Immediately after crack formation the attenua-
tion often decreased in specimens fatigued at high amplitudes.
Two possible explanations for this are that the dislocation
density was still low in the remaining uncracked material or
that the orientation of the crack tip caused an unusual re-
flection or wave cancellation to occur. Eventually the energy 1
reflected from the propagating crack dominated and caused the
attenuation to increase rapidly till failure.

In addition to 7075 aluminum, T-bar specimens of 2024-T4

were tested. The change in attenuation with fatigue life
exhibited by these specimens was similar to that of the 7075-T651
aluminum specimens. A plot of the change in attenuation versus
percent fatigue life for a typical 2024-T4 aluminum specimen

is displayed in Fig. 22.

In general, the time, place, and extent of crack initiation
are determined by the surface condition of the specimen whereas
crack propagation is governed by bulk properties. The number
of fatigue cycles required to initiate a crack and thus the
total fatigue life, will vary greatly from specimen to specimen

if the surfaces are not uniform, as is the case for specimens
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tested in the as-received condition. However, the number of
cycles from crack initiation to fracture will be relatively
constant from test to test if the material through which the
crack propagates is reasonably stress-free, as in the case
with annealed specimens. For these reasons, the number of
cycles between crack initiation and specimen fracture can be
correlated with applied bending amplitude while the number of
cyc 8 to crack initiation cannot. If early warning of fa-
tigue failure is measured by the number of cycles between
crack initiation and failure, greater early warning is_expected
with specimens tested at lower applied bending amplitudes.
Experimentally, an 0.5 dB change in ultrasonic attenuation
or a 2.5 dB change in acoustic emission output was always found
to have occurred just before or at the time of crack initiation.
Crack initiation was verified by eddy current testing. Data
showing the correspondence between bending amplitude and early
warning are included in Table I, a compilation of results from
9 fatigue tests. Percentage (of the total test duration) early
warning is included in the table to illustrate the fact that,
because of large variability in the number of cycles to crack
initiation, percentage early warning is not correlated with
either applied bending amplitude or total test duration. This
can also be seen by comparing Figs. 20 and 23, which depict
results of tests wherein the same degree of early warning
(approximately 80%) could be calculated despite large differ-

ences in applied bending amplitude (6.25 mm vs. 7.05 mm) and

total test duration (6.0 x 106 cycles vs., 1.7 x 106 cycles).
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Acoustic Emission Measurements and Results

Acoustic emission data was gathered using the two sys-
tems described earlier. In the absence of any a priori
information suggesting a different approach, the frequency
responses of the two systems were selected to be approx-
imately equal. As expected, the observed differences in
system performance and in the data itself from the two
systems is negligible. In contrast to the situation with
ultrasonic attenuation monitoring, considerable acoustic
emission activity in the form of burst emission transpired
early in the fatigue tests. A typical set of burst wave-
forms, one from each system, is shown in Fig. 24. The
relatively long, 1.5 m sec., duration of the bursts is at-
tributable to multiple reverberations inside the specimens.
The one way travel time along the specimen length is 50 usec.
The different transducer resonances of the two acoustic
emission systems can be clearly seen in Figs. 25 and 26.
The burst captured through the Trodyne system has a maximum
amplitude in the frequency spectra at 100 kHz whereas the
burst captured through the Admiralty system has a maximum
amplitude at 400 kHz. The presence of many sharp peaks in
both spectra, rather than a smooth, more continuous curve,
supports the hypothesis that high order vibrational modes

are present.




a)

b)

FIGURE 24. TYPICAL MULTIPLE ACOUSTIC EMISSION BURST

a) Admiralty System
b) Trodyne System
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Acoustic emission waveforms were obtained at intermit-
tent stages of the aluminum alloy T-bar specimen fatigue
tests. To allow evaluation of the effects of machine in-
duced noise, waveforms were also obtained for acoustic
emission specimens loaded statically (gripping the specimen
by hand) rather than dynamically (i.e., loaded by the fa-
tigue machine). Fast Fourier Transform (FFT) computations
were used to generate frequency spectra from the time do-
main waveforms. Interpretation of the frequency spectra
requires consideration of the instrumentation frequency
response measured as described earlier. The Trodyne sys-
tem was used for the frequency spectra work about to be pre-
sented here.

Figures 27, 28, 29 and 30 show typical frequency spec-
tra for acoustic emission bursts recorded during fatigue
testing., 1In Fig. 27, both bursts occurred when the surface
of the specimen where the crack initiated was in dynamic
tension. The upper half of Fig. 27 shows the svectrum of
a burst that occurred prior to crack initiation and the low-
er half shows the spectrum of a burst that occurred after
crack initiation. The burst resulting from the crack being
pulled in tension (Fig. 27(b)) has relatively more energy in
the higher frequencies than does the burst captured prior to
crack initiation (Fig,27(a)). Although it is not apparent in
the frequency spectra, because all spectra were normalized

to the amplitude of the largest spectral component, the
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after-crack burst was of larger amplitude than the precrack
burst.

Figure 28 shows typical frequency spectra of acoustic
emission bursts due to dynamic loading of the crack in com-
pression (Fig. 28(a)) and tension (Fig. 28(b)). The bursts
are of similar amplitude and have several frequency compo- ;
nent peaks in common. At various times during the fatigue
test, the fatigue machine was stopped and the specimen was
hand loaded statically. Figures 29(a) and 29(b) compare

the frequency spectra of two acoustic emission bursts re-

sulting from static and dynamic loading, respectively at
approximately the same number of cycles into the fatigue
test. Because the specimen was loaded by hand, machine
noise was largely removed; therefore the higher fre-
guency spectral components appear relatively larger in the
normalized frequency spectrum. Additionally, a large amount
of energy in the low frequencies is primarily attributable
to the frequency response of the Trodyne acoustic emission
system and transducer (see Fig.2) which greatly colors the
true signal.

Figures 30(a) and 30(b) compare the frequency spectra

of two acoustic emission bursts occurring when the fatigue

crack was statically loaded in tension at two different times
when the fatigue test was interrupted. Both spectra have

several peaks in common: 1300, 1700, 2000, 2700, and
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2800 kHz. The spectrum in Fig. 30(b) has a higher ampli-
tude than the spectrum in Fig. 30(a). The burst whose FFT
is shown in Fig. 30(b) occurred later in the fatigue test
than the burst whose FFT is shown in Fig. 30(a). Thus the
crack was larger and advancing more rapidly so a higher
amplitude emission would be expected.

Figure 31 shows the time domain waveform (a) and the fre-
quency spectrum(b) of the noise in the Trodvne acoustic
emission system. The noise energy is fairly evenly distrib-
uted over the spectrum and the effect of the 3 mHz filter
cut-off is clearly evident.

The trends revealed by continuous monitoring of acous-
tic emission also provided insight into the fundamental na-
ture of fatigue damage. 1In Fig. 32 the relative changes in
the averaged rms voltage output of both the Admiralty and
Trodyne systems are displayed. As can be seen, the overall
acoustic emission level increased when a crack formed and
propagated. It was conjectured that the bulk of high am-
plitude acoustic emissions after crack initiation were due
to the newly created crack walls abrading against each other
during subsequent fatigue cycles. To test this hypothesis,
an electronic switch was used to allow the acoustic emission
output signals originating at different parts of the load

cycle to be separately metered. The switch was synchronized
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with the fatique machine so that two equal parts of the
load cycle were separated, one half corresponding to the
upper surface of the specimen in compression and the other
half corresponding to the same surface of fhe specimen in
tension. This enabled separate recording of acoustic
emissions due to crack wall abrasion and acoustic emis-
sions due to crack propagation. The specimen position for
each of these two cases is illustrated in Fig. 33. These
results showed the largest contribution to the rms acoustic
emission level after crack initiation was the acoustic emis-
sion caused by the crack propagating and not the acoustic
emission caused by the crack wall rubbing. This behavior

is clearly shown in Fig. 34 where the rms output from both
halves of the fatigue cycle are plotted versus percent fa-

tigue life for a 7075-T651 aluminum specimen.

Eddy Current Examination

A Halec eddy current-crack detector unit, shown in Fig.
35, was used to locate surface-breaking fatigue cracks after
the occurrence of a significant change in either ultrasonic
attenuation or acoustic emission levels. This instrument
operated at a frequency of 3 MHz and was therefore only sen-
sitive to surface-breaking cracks. A pencil-shaped eddy
current probe with a rounded tip enabled detection of surface

cracks down to 1/16" long. An advantage of the rounded probe
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tip was its insensitivity to departures of as much as 15

degrees from the ideal angular orientation normal to the
specimen surface

Eddy current response is affected not only by specimen
dimensions, geometry, and surface discontinuities, but also
by the electrical conductivity and magnetic permeability of
the specimen material, However, for fatigue cycled alumi-
num any such changes are concentrated near the crack and
thus contribute to the eddy current indication from the
crack itself. Since changes in the total volume of metal
beneath the probe affect the eddy current signal, the probe
was typically maintained at least 1/8 in. from all specimen
edges during scanning (scans nearer to a specimen edge could
be made only with the use of special procedures). At this
distance the induced eddy currents due to edge effects are
too small to affect instrument response. The utility of
eddy current scanning of fatigue specimens is enhanced by
the fact that the geometry of a typical fatigue crack (tight
and deep) is optimal for eddy current detection. A previously
used rectangular bar specimen design had to be changed to
a T-shaped specimen design to permit eddy current probe
access to the fatigue damaged region. The eddy current ex-
amination was performed at stated intervals and when appro-
priate indications were obtained from the ultrasonic atten-

vation and acoustic emission monitoring. As described
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previously, a cut-off circuit was used to stop the fatigue

test when a specified change in attenuation occurred. Then
eddy current scanning was used to test for the presence of

a surface crack. It is interesting to note that every pos-

itive eddy current crack indication could be verified using 1

z optical microscopy. Due to the symmetric loading, there |
| were four highly probable sites for crack initiation on
each specimen. These sites were located at the four cor-
ners of the reduced cross-section shoulder. The presence
of multiple potential crack initiation sites precluded any
simple continuous eddy current monitoring.

After the existence of a crack was confirmed, further
eddy current scanning was employed in order to determine
i; the length and relative severity of the crack. A series of
i scans for a typical fatigue specimen is shown in Fig. 36.
The eddy current pencil probe was used to scan along the
specimen length at 0.0l in. intervals starting 0.1l in.

from the specimen edge. The amplitudes of the peaks repre-

sent the relative crack depth at different locations along

its length. The positions of the peaks represent the po-

sition of the crack along the scanned specimen length. The

scans shown in Fig. 36 indicate that the crack scanned was

perpendicular to the specimen length and originated at the
top edge of the scanned width. This scanning procedure gave

3 a very accurate and fast method of crack location and relative
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FIGURE 36. MULTIPLE EDDY CURRENT SCANS OF A SURFACE FATIGUE
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size. When the fatigue test was continued to specimen frac-
ture, the propagation of the crack across the specimen sur-
face could be ecasily monitored using eddy current scanning.
This was of particular importance when testing specimens
with as-received surfaces, because the crack was undetect-

able visually in its early stages.

Metallographic Examination

After the presence of a crack was detected by a change
in ultrasonic attenuation or acoustic emission and verified
by eddy current probing, the fatigue test was either conti-
nued until specimen fracture or terminated to allow metal-
lographic examination. In cases where the specimen fract-
ured, the fracture surfaces were examined under low mag-
nification tc determine the site of crack initiation. A
representative set of fracture surfaces was examined using

an ISI Model 60A scanning electron microscope (SEM) at mag-

nifications up to 3800X. The exceptional depth of field

afforded by the scanning electron microscope aided the iden-

imen fracture surface. In the cases where the fatigue test
was terminated prior to fracture, the region of the specimen :

{ : surface close to the crack was carefully examined with a

Bausch and Lomb metallographic microscope. Subsequent to

t tification of voids and intermetallic particles on the spec-
|
;
L this surface examination, the specimen was sectioned, mounted

in a metallographic mount and etched to delineate the microstructure.

e Y
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The specimen microstructure was examined for the presence
of reqgions of high plastic deformation such as deformation
bands, and for the effects of grain boundaries, inclusions,
and precipitates on crack propagation.

Metallographic analysis performed on the fatigue spec-
imens showed several interesting features. Figure 37 in-
dicates the location of the fracture surfaces shown in the
scanning electron micrographs of Figs. 38 through 42, Ex-
amination of the fracture surface of 7075-T651 aluminum
specimens with high surface polish revealed many voids, and
voids containing intermetallic particles. Figure 38 shows
a void with an intermetallic particle at its base and a void
with a micreccrack running through it. In Fig.39 a void con-

{ taining a fractured intermetallic particle is shown. Frac-
3 tured intermetallic particles are not uncommon since they are,
in general, more brittle than the matrix material. The pro-
p pagation of microcracks and fracture of intermetallic particles
are two likely sources of the acoustic emission observed be-
fore and during macrocrack propagation leading to failure. Fa-
tigue striations indicating extensive localized plastic de-
formation, like those in Fig. 40, are easily observed at 800X
on the fracture surfaces of the 7075-T651 aluminum specimens.
As mentioned previously, the high surface polish specimens
sustain more bulk damage prior to surface macrocrack formation

than their as-received surface counterparts. Comparison of
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FIGURE 39. SCANNING ELECTRON MICROGRAPH (3800X)
Void containing fractured inter-
metallic particle
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the fracture surfaces of cach type specimen verified this
fact because the high surface polish specimen's fracture
surface revealed more voids and fractured intermetallic
particles. Figure 41 shows a portion of the fatigue frac-
ture surface of a 7075-T651 aluminum specimen that was

tested in the as-received surface condition. The fracture
surface at 650X reveals numerous voids in the matrix,align-
ed with two grain boundaries that run parallel to each other.
The fracture surface of an annealed 7075 aluminum fatigue
specimen at 100X is shown in Fig. 42. Large striations can
be seen in the ductile matrix where cracks progressed toward
the center from all four corners of the cross-section.

Some specimens with surface breaking cracks were removed
from the fatigue machine prior to failure, and a metallurgical
microscope was used to examine the cracked surfaces. Figure
43 is a schematic representation of the fatigue crack region
on the specimen. Figure 44 shows the transgranular propaga-
tion of a fatigue crack in a typical as-received 7075-T651
aluminum specimen. The elongation of the grains indicates the
rolling direction of the bar stock from which the specimen was
fabricated. It can also be seen that the crack initiated and
propagated perpendicular to the rolling direction. The path
of a fatigue crack on the top surface of the specimen at high

magnification is shown in Fig. 45.




1 FIGURE 41. SCANNING ELECTRON MICROGRAPH (650X)
As-received 7075-T651 aluminum
Void coalescence at grain boundaries




FIGURE 42, SCANNING ELECTRON MICROGRAPH (100X)
Annealed 7075 aluminum
! Large fatigue striations
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As-received 7075-T651 aluminum
Fatigue crack propagating
transgranularly




OPTICAL MICROGRAPH(2000X)
Fatigue crack propagating

FIGURE 45.
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This is similar to the microcrack on the fracture surface
shown previously in Fig. 38 since both cracks propagate through
a void. Figure 46 is an example of secondary cracking branch-
ing off and running parallel to the main fatigue crack before
rejoining it. Figure 47 shows under high magnification (1500X)
a stepped portion of the same fatigue crack displayed in Fig.
44. The stepped nature of the crack suggests that the crack
tip followed localized deformation bands during propagation

similar to those on the fracture surface shown previously in

Fig. 40.
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FIGURE 46. OPTICAL MICROGRAPH (75X) 3
Secondary fatigue cracking i




FIGURE 47. OPTICAL MICROGRAPH(1500X)
Fatigue crack propagating
in step-like path




99

CONCLUSIONS

Overall results indicate that significant features of
fatigue damage (c.g. crack propagation) can be correlated
with extractable characteristics of ultrasonic data (e.g.
acoustic emission spectral signature and rms level). Further,

ultrasonic attenuation and acoustic emission techniques can

i be used to reliably detect the presence of fatigue damage.
Since there is some uncertainty in the degree of early warn-
ing obtainable with either method, combined monitoring increases i
the likelihood of successful early warning. However, no ;
synergistic effects are apparent. Conventional body wave and }
surface wave ultrasonic methods have been shown to be inferior |
to ultrasonic attenuation and acoustic emission techniques for
early detection of fatigue damage.

;j For attenuation measurements, the problem associated with

E complex geometries can successfully be overcome by interrogating

the specimen using guided modes of propagation. Attenuation

measurements can be made reliably even in the presence of high

levels of background noise. Comparatively poor in noise

! ' immunity, acoustic emission measurements are useful even when

! propagation modes are unknown since the occurrence of micro-

q . structural changes can still be inferred from the data, provided
f the acoustic emission signals are larger than the background
noise. Characterization of such changes awaits substantial
improvements in data acquisition and reduction methodology.

Data generated by both acoustic emission and ultrasonic
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attecnuation testing can be strongly influenced by the alloy
composition, microstructure, degree of deformation, and prior
thermal and mechanical history of the specimens. Specialized
instrumentation can be used to significantly reduce the time
and effort that would otherwise be needed to generate the large
volume of data required for an exhaustive study of the methods
of ultrasonic evaluation of fatigue damage. Optimization of

an acoustic emission technique to permit reliable measurements
in the presence of background noise is a prerequisite for
fatigue test monitoring. Acoustic emission monitoring will not
be optimally suited for in-service fatigue damage detection
until much more work is done to elucidate the basic causes and

physical characteristics of the emission directly attributable

to structural defects.
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